Oligomeganephronia in an Adult Presenting With Features of Chronic Kidney Disease

Yoichi Iwafuchi a, f, Takashi Morita b, Tetsuo Morioka c, Takeshi Kamura d, Yuko Oyama a, Ichiei Narita e

Abstract

We report the case of a 29-year-old man with oligomeganephronia (OMN) who presented with symptoms of chronic kidney disease (CKD). Radiological and ultrasound images showed bilateral mildly small and uneven kidneys. Right renal biopsy was performed. Under light microscopy, the number of glomeruli in histological samples was decreased and the remaining glomeruli were markedly enlarged without mesangial proliferation. The obsolescent glomeruli had findings compatible with segmental sclerosis. Tubules were dilated and enlarged, and there was a presumptive primitive duct enclosed by a smooth muscle collar. Dysplastic changes in the biopsy specimen suggested that the cause of the patient’s small kidneys was a congenital anomaly rather than acquired kidney disease. OMN is one of the probable causes of CKD in adults. Angiotensin type II receptor blockers may be an effective treatment for focal segmental glomerulosclerosis due to OMN.

Keywords: Oligomeganephronia; Adult case; Chronic kidney disease; Focal segmental glomerulosclerosis; Renal hypodysplasia; Primitive duct; Angiotensin type II receptor blocker

Introduction

Oligomeganephronia (OMN) is a congenital non-familial anomaly of bilateral renal hypoplasia, first described by Habib et al in 1962 and characterized by a striking reduction in the number of nephrons and markedly enlarged glomeruli [1]. Children with OMN develop polyuria, polydipsia, urine concentrating deficiency, and proteinuria, usually leading to progressive renal failure during childhood [2]. Some cases are initially considered asymptomatic proteinuria, with diagnosis of OMN based on histologic examination occurring by school age. We report the diagnosis of OMN in an adult man presenting with symptoms of chronic kidney disease (CKD), who had marked proteinuria that improved with the administration of an angiotensin type II receptor blocker (ARB).

Case Report

A 29-year-old man was referred to our hospital because of a 12-year history of proteinuria. In the 5 years before admission, his renal function had gradually worsened. The patient was admitted to our hospital for diagnostic evaluation and treatment. He had been born full term, with a normal birth weight of 3,100 g. He was diagnosed with a ventricular septal defect (VSD) at 5 years of age. The patient’s growth and development had been otherwise normal. He had no history of recurrent urinary tract infections. There was no family history of renal disease.

Physical exam findings were as follows: height 178.0 cm, weight 80.6 kg, body mass index 25.4, blood pressure 126/68 mm Hg, pulse rate 72 beats/min, and body temperature 36.6 °C. The patient was not deaf. The patient’s ocular fundus was normal. The remainder of his physical examination was unremarkable, without ascites or pretibial edema.

Urinary protein was 1,105 mg/dL and 3.8 g/day. The protein/creatinine ratio in a spot urine specimen was 3.4. The urinary sediment showed 1 - 4 erythrocytes and 1 - 4 leukocytes per high-power field. The patient’s hematocrit was 45.6%, his hemoglobin concentration was 15.5 g/dL, his platelet count was 205,000/µL, and his leukocyte count was 5,590/µL. His serum urea nitrogen level was 15.2 mg/dL, creatinine was 1.61 mg/dL, estimated glomerular filtration rate (eGFR) was 43.8 mL/min/1.73 m², uric acid was 9.8 mg/dL, cholesterol was 172 mg/dL, total protein was 6.7 g/dL, and albumin was 3.8 g/dL. His C-reactive protein level was 0.05 mg/dL, IgG was 918 mg/dL, IgA was 138 mg/dL, IgM was 74 mg/dL, and ferritin was 129 mg/L. Serum complement was normal. Circulating...
immune complexes were negative. The other autoimmune serological findings were within normal ranges and serum hepatitis viral markers were negative. An intravenous pyelogram revealed smaller (right) and small (left) kidneys without hydronephrosis. Size of renal pelvis and calices of bilateral kidneys seemed mildly small (Fig. 1). Abdominal computed tomography (Fig. 1) and ultrasound showed smaller (right) and small (left) kidneys with uneven surface of kidneys (longitudinal diameters: right kidney 10.1 cm and left kidney 8.8 cm on ultrasonography), but apparent thinning of bilateral renal cortex was not present. Electrocardiography revealed normal sinus rhythm with normal axis and intervals. Echocardiography revealed a small VSD with left to right shunting.

On the patient’s second day in the hospital, a right renal...
biopsy was performed to investigate the cause of proteinuria. Under light microscopy, the number of glomeruli in the biopsy sample was obviously decreased, with only nine glomeruli found in two pieces of adequate length. Of these glomeruli, one was obsolete, one was becoming obsolete, and the remaining glomeruli were markedly enlarged with slightly hyperplastic juxtaglomerular apparatus, but without mesangial proliferation (Fig. 2a). Diameters of two glomeruli were 300 μm and 320 μm. The glomerulus in the process of becoming obsolete had findings compatible with segmental sclerosis; segmental sclerotic lesions, adhesion of glomerular tufts, crescent-like epithelial cell proliferation, and hyaline deposits were seen (Fig. 2b). Tubules were dilated and enlarged, and focal tubular atrophy with mild interstitial cellular infiltration was noted (Fig. 2c). There was a peculiar area in the cortex containing numerous small vessels, scattered muscle-like cells, and a presumptive primitive duct enclosed by a smooth muscle collar (Fig. 2c, d). The epithelial cells of this duct were cytokeratin positive (Fig. 2e) and the collar cells were smooth muscle actin-positive (Fig. 2f). No significant deposits of immunoglobulins or complement components were found with immunofluorescence. Only one glomerulus was found in the electron microscopic specimen and neither electron dense deposits nor specific findings were observed. These imaging and histological findings led us to the diagnosis of OMN.

After obtaining informed consent, we collected DNA from the patient. Using his whole blood, we looked for mutations in paired box gene 2 (PAX2) and hepatocyte nuclear factor-1 beta (HNF-1β), but no mutations were detected.

Renal biopsy-proven cases of OMN are very rare in adults. We have identified only six reported adult cases [3-5] confirmed by renal biopsy, including the case presented here (Table 1). These six cases included five males and one female with a mean age of 28 years (range 19 - 36 years). Low birth weight and intrauterine growth restriction are sometimes related to OMN, but five of the six patients were born at full term with normal birth weights. Two patients had hypertension, three had proteinuria of less than 1.0 g/day, and three had proteinuria over 3.0 g/day. The median serum creatinine level at presentation was 1.71 mg/dL, and the median eGFR was 44.3 mL/min/1.73 m². The present case was an adult with OMN, who showed marked proteinuria, moderate renal failure, and bilateral atrophic and uneven kidneys.

The pathogenesis of OMN remains unknown, but OMN has been observed in association with certain genetic disorders, including mutations in the PAX2 [6] and HNF-1β [7] genes. OMN associated with a PAX2 mutation has been reported as one of the symptoms of renal-coloboma syndrome [8]. Mutation of the PAX2 gene associated with OMN without

Table 1. Reported Cases of Oligomeganephronia in Adults

<table>
<thead>
<tr>
<th>Reports</th>
<th>Age; sex</th>
<th>Gestation; birth weight (weeks; g)</th>
<th>Initial blood pressure (mm Hg)</th>
<th>Hematuria (0-4/HPF)</th>
<th>Urine protein (g/day)</th>
<th>eGFR (ml/min/1.73 m²)</th>
<th>Kidney (right/left) (mm)</th>
<th>Other anomaly</th>
<th>Therapy</th>
<th>Kidney (right/left) (mm)</th>
<th>Other anomaly</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kawanishi et al [3], case 1</td>
<td>36; male</td>
<td>37; 2,700</td>
<td>166/113</td>
<td>0.18</td>
<td>None</td>
<td>2.65</td>
<td>Atrophic (89/93)</td>
<td>None</td>
<td>None</td>
<td>ACEI, ARB, CCB, αβ-block, aspirin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kawanishi et al [3], case 2</td>
<td>19; female</td>
<td>41; 2,410</td>
<td>95/60</td>
<td>0.53</td>
<td>None</td>
<td>1.61</td>
<td>Atrophic (67/80)</td>
<td>None</td>
<td>None</td>
<td>ACEI, ARB, CCB, αβ-block, aspirin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuke et al [4]</td>
<td>21; male</td>
<td>41; 3,405</td>
<td>132/70</td>
<td>0.65</td>
<td>None</td>
<td>1.63</td>
<td>Atrophic (70/85)</td>
<td>None</td>
<td>None</td>
<td>ACEI, ARB, CCB, αβ-block, aspirin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present report</td>
<td>29; male</td>
<td>39; 3,100</td>
<td>126/68</td>
<td>3.96</td>
<td>None</td>
<td>1.61</td>
<td>Atrophic (101/88)</td>
<td>None</td>
<td>None</td>
<td>ACEI, ARB, CCB, αβ-block, aspirin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td>90/92</td>
<td>3,100</td>
<td>126/68</td>
<td>3.96</td>
<td>None</td>
<td>1.61</td>
<td>Atrophic (101/88)</td>
<td>None</td>
<td>ACEI, ARB, CCB, αβ-block, aspirin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cre: creatinine; eGFR: estimated glomerular filtration rate; ACE-I: angiotensin-converting enzyme inhibitor; ARB: angiotensin type II receptor blocker; CCB: calcium channel blocker; RBC: red blood cell.

Discussion

Renal biopsy-proven cases of OMN are very rare in adults. We have identified only six reported adult cases [3-5] confirmed by renal biopsy, including the case presented here (Table 1). These six cases included five males and one female with a mean age of 28 years (range 19 - 36 years). Low birth weight and intrauterine growth restriction are sometimes related to OMN, but five of the six patients were born at full term with normal birth weights. Two patients had hypertension, three had proteinuria of less than 1.0 g/day, and three had proteinuria over 3.0 g/day. The median serum creatinine level at presentation was 1.71 mg/dL, and the median eGFR was 44.3 mL/min/1.73 m². The present case was an adult with OMN, who showed marked proteinuria, moderate renal failure, and bilateral atrophic and uneven kidneys.

The pathogenesis of OMN remains unknown, but OMN has been observed in association with certain genetic disorders, including mutations in the PAX2 [6] and HNF-1β [7] genes. OMN associated with a PAX2 mutation has been reported as one of the symptoms of renal-coloboma syndrome [8]. Mutation of the PAX2 gene associated with OMN without
CKD is a worldwide public health problem, with adverse outcomes of kidney failure, cardiovascular disease, and premature death. In 2002, a simple definition of CKD was proposed and subsequently adopted worldwide. Our case had CKD stage G3bA3. Our patient’s proteinuria had continued for at least 12 years, and he had experienced none of the characteristic symptoms associated with OMN, such as polyuria, polydipsia, or growth retardation. The clinical course of our case matched the definition of CKD. OMN is one of the probable cause of CKD in adults, especially CKD with bilateral small and uneven kidneys. Patients with OMN sometimes have atrophic kidneys, which is a relative contraindication for renal biopsy. The definitive diagnosis of OMN must be based on renal histopathological findings, so OMN in adults may be overlooked. In cases without histological findings, it is difficult to distinguish between congenital and acquired disease.

Our patient’s proteinuria was appreciably reduced by ARB administration. In patients with glomerulomegaly and FSGS, angiotensin inhibitors, such as angiotensin converting enzyme inhibitors and ARB, decrease proteinuria and slow the rate of progression to end stage renal disease [17]. ARB might be effective in reducing proteinuria in FSGS due to OMN [4].

Acknowledgement

The authors are grateful to Dr. N. Morisada and Dr. K. Iijima (Department of Pediatrics, Kobe University Graduate School of Medicine) for their help with genetic analysis, and to Mr. N. Sakamoto, Ms. S. Tsuchida, Ms. M. Yoshinuma, and Ms. M. Igashima (Department of Pathology, Shinrakuen Hospital) for their technical assistance.

Conflict of interest

All of the authors have no competing interests to declare.

References

7. Sagen JV, Bostad L, Njolstad PR, Sovik O. Enlarged nephrons and severe non-diabetic nephropathy in hepato-
15. Heptinstall's Pathology of the Kidney. 6th ed. Philadelphia: Lippincott, 2007; p1294, Figure 26.50.